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Abstract. The notion and some properties of (strongly) B-rings, in a

natural way, are extended to (strongly) B- and (strongly) BJ -semirings

which is somewhat similar to the notion of rings having stable range 2. Re-

sults are given showing the connection between several types of semirings

whose finite sequences satisfy some stability condition, some involving the

Jacobson k-radical of the semiring R. Besides some examples and other

results, it is shown that R[x], the semiring of polynomials over a semiring

R, is not a B-semiring (consequently, not a strongly B-semiring) when R

is a zerosumfree semiring. We also study some algebraic properties of the

S-relative B- and BJ -semirings with respect to a nonempty subset S of

R.
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1. Introduction

The main purpose of this paper is to continue and extend the work of the

second author [12] (which is a study of some properties of B- and BJ -semirings)

to (strongly) B- and (strongly) BJ -semirings ((S)B- and (S)BJ -semirings for

short, respectively) in general as a natural extension of (strongly) B-rings [10],

which is similar to the notion of rings having stable range 2 (see Definitions

3.1, 3.3, 4.1, and Remark 3.6(d)). Besides some other results on B- and BJ -

semirings (given in [12]), we will turn our attention to the study of SB-semirings

[resp. SBJ -semirings]. Our main objective here is to compare the theory of

this particular subclass of B-semirings [resp. BJ -semirings] with that of B-

semirings [resp. BJ -semirings].

∗ We assume that the reader is familiar with basic notion of (commutative)

semiring theory. However, in Section 1, we will write all necessary definitions

and results related to (commutative) semirings that are required in this work

for the sake of completeness and mainly follow Golan [5].

The concept of stable range was initiated by H. Bass in his investigation

of the stability properties of the general linear group in algebraic K-theory [2].

In ring theory, stable range provides an arithmetic invariant for rings that is

related to interesting issues such as cancelation, substitution, and exchange.

The simplest case of stable range 1 has especially proved to be important in

the study of many ring-theoretic topics.

• In this paper a semiring (ring) R, unless otherwise indicated, is commu-

tative with identity 1 ̸= 0 and 0a = 0 for all a ∈ R; and U(R) denotes the set

of units of R. By a B-type semiring, we mean a (strongly) B-, or a (strongly)

BJ -, or an S-relative B-, or an S-relative BJ -semiring (Definition 3.9), where

S is a nonempty subset of R. Also by a sequence of elements of R, we mean a

finite sequence and will use it implicitly without any confusion in the context.

Definition 1.1. Let R be a commutative semiring (ring) and s ≥ 1 an in-

teger. A sequence (a1, a2, . . . , as, as+1) of elements of R is said to be stable

if (a1, a2, . . . , as, as+1) = (a1 + b1as+1, a2 + b2as+1, . . . , as + bsas+1) for some

b1, b2, . . . , bs ∈ R. A sequence (a1, a2, . . . , as, as+1) of elements of R is said to

be a unimodular sequence if 1 is in the ideal (a1, a2, . . . , as, as+1).

Remark 1.2. As in [4], we use (a1, a2, . . . , as, as+1), s ≥ 1, to denote both a

sequence and the ideal generated by the elements of the sequence; but the

context will always make our meaning clear. Also, we follow [4] for the term

“unimodular sequence” instead of “primitive vector” as used in [10]. For a

detailed study of stable range in commutative rings and (strongly) B-rings; see

[4, 10, 11, 13, 14].
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A Class of Commutative Semirings with Stable Range 2 II 79

We now recall the definition of a (strongly) B-ring from [10] (see also Def-

initions 3.3 and 4.1 for the definitions of (strongly) B- and (strongly) BJ -

semirings).

• Let J(R) be the Jacobson radical of a commutative ring R. A ring R is

said to be a B-ring if for any unimodular sequence (a1, . . . , an+1), n ≥ 2 with

(a1, . . . , an−1) ̸⊆ J(R), there exists an element b in R such that (a1, . . . , an +

ban+1) = R.

• Similarly, R is defined to be a strongly B-ring (or SB-ring for short) if

d ∈ (a1, . . . , an, an+1), n ≥ 2, and (a1, a2, . . . , an−1) ̸⊆ J(R) implies that there

exists b ∈ R such that d ∈ (a1, a2, . . . , an−1, an + ban+1).

In [10], Moore and Steger studied some properties of (strongly) B-rings in

detail. Besides many other results regarding B- and SB-rings, they showed

that a regular ring is an SB-ring ([10, Corollary 3.2]) and R[X] is a B-ring

([10, Theorem 2.7]) [resp. an SB-ring ([10, Theorem 3.4])] if and only if R is

completely primary (a ring consisting of units and nilpotents) [resp. a field];

and we will discuss some of these results for B-type semirings in the sequel.

∗∗ The organization of this paper is as follows: In Section 1 we recall some

standard definitions and results from semiring theory that will be used in the

sequel. Sections 2 [resp. and 3], are devoted to (S-relative, Definition 3.9)

B- and BJ -semirings [resp. SB- and SBJ -semirings]. In our study of these

semirings, it suffices only to consider unimodular [resp. arbitrary] triples in-

stead of arbitrary unimodular (n+1)-tuples (Remark 3.6(b) and for S-relative

case (Theorem 3.12), sequences of size 3 need not be unimodular (i.e., should

satisfy a special condition) [resp. (n + 1)-tuples (Theorem 4.3)]. In these two

sections, we discuss the homomorphic image of B-type semirings (Theorems

3.13 and 4.6) and also in the beginning of Section 2 recall some definitions

and results from [12] (Definitions 3.1, 3.3, and Remark 3.6). In Section 3, we

show that R[x] (the semiring of polynomials over a semiring R) is not a B-

semiring (consequently, not a strongly B-semiring) when R is a zerosumfree

semiring (Theorem 4.9). Also in Theorem 4.9, we show that R[x] can not be

a B-semiring with respect to I[x] when I is a strong proper ideal of R. In

Section 4, besides some other results (Propositions 5.1, 5.3, and Example 5.4),

it is shown that a plain simple yoked regular semiring is an SB-semiring (The-

orem 5.2). Finally, in this section, we write a brief note on the notion of matrix

completion over commutative rings and close the paper by posing a question

related to the matrix completion of B- and 2-stable semirings.
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80 E. Mehdi-Nezhad, A. M. Rahimi

2. Commutative semirings

In this section we recall some definitions and prove some results concerning

semirings which will be used in the sequel. By a semiring (R,+, ·), we will

mean a nonempty set R with two binary operations of addition and multipli-

cation defined on R such that (R,+) and (R, ·) are commutative monoids with

identity elements 0 and 1, respectively, where Multiplication distributes over

addition (from either side) and 0a = 0 for all a ∈ R and 1 ̸= 0.

• A nonempty subset I of a semiring R will be called an ideal if a, b ∈ I and

r in R implies a+ b in I and ra in I.

Note that in [5, Chapter 5], Golan defines an ideal I of a semiring R to be

different from R, but we don’t follow this assumption and make it clear when

there is any confusion in the context. In general, by “ideal” (in contrast to

Golan, we do not necessarily mean a proper ideal. We shall thus always say

“proper ideal” when we mean a proper ideal.

Definition 2.1. A subtractive ideal (= k-ideal) I of a semiring S is an ideal

such that if a, a+ b ∈ I, then b ∈ I. An ideal I of S is said to be a strong ideal

(= a strongly k-ideal) if and only if a+ b ∈ I implies that a ∈ I and b ∈ I.

Remark 2.2. From the above definition, it is clear that (0) is a k-ideal of S.

Also, every strongly k-ideal of a semiring S is a k-ideal of S. But the converse

need not be true in general. For example, the set 2N of all nonnegative even

integers is a subtractive ideal of the semiring of all nonnegative integers. But

it is not a strongly k-ideal since 3+5 ∈ 2N while neither 3 nor 5 belong to 2N .

Note that in [5], Golan uses the term “subtractive ideal”, [resp. strong] for a

k-ideal [resp. strongly k-ideal] but in the literature of semirings, authors use

equivalently the term “k-ideal” [resp. strongly k-ideal] as well. Throughout

this work, except for some cases in this section, we mainly follow Golan in [5].

Also, for some examples of nonsubtractive ideals in a semiring, see Chapter 5

of [5].

• We define the Jacobson k-radical of a semiring R, denoted by Jk(R) (=

Jac(R) as used in [12]), to be the intersection of all maximal k-ideals of R.

Notice that by [15, Corollary 2.2], the Jacobson k-radical of R always exists

and it can easily be seen that it is a k-ideal since the intersection of any number

of k-ideals is a k-ideal.

We now follow Golan [5, Chapter 8, p. 92] to define a morphism of semirings

as follows.

Definition 2.3. If R and S are semirings then a function f : R → S is a

morphism of semirings if and only if:
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A Class of Commutative Semirings with Stable Range 2 II 81

(a) f(0R) = 0S ;

(b) f(1R) = 1S ; and

(c) f(r + r′) = f(r) + f(r′) and f(rr′) = f(r)f(r′) for all r and r′ in R.

We now begin considering some properties of morphisms of semirings.

Proposition 2.4. (cf. [5, Proposition 8.37]) Let f : R → S be a morphism of

semirings.

(a) If H is an ideal of S, then f−1(H) is an ideal of R. Moreover, if H is

subtractive then so is f−1(H).

(b) If f is a surjective morphism and I is an ideal of R, then f(I) is an

ideal of S.

(c) If f is a surjective morphism, then the kernel of f is a subtractive ideal

of R.

(d) If f is a surjective morphism, then u is a unit in R if and only if f(u)

is a unit in S.

Proof. Parts (a) and (b) follows from [5, Proposition 8.37] and (c) follows

from (a) since ker(f) = f−1({0}). The necessary part of (d) is clear since

1S = f(1R) = f(uu−1) = f(u)f(u−1). Conversely, let u ∈ R, I = (u) an

ideal of R, and f(u) be a unit in S. Clearly f(I) = S since f(u) is a unit

in S and so I = R. Otherwise, I ̸= R implies 1R ∈ R \ I, which implies

1S = f(1R) /∈ f(I) = S, yielding a contradiction. Thus u is a unit in R. □

Remark 2.5. (As defined on page 68 of [5]), an ideal I of a semiring R defines

an equivalence relation =I on R called the Bourne relation, given by r =I r′ if

and only if there exist elements a and a′ of I satisfying r + a = r′ + a′. Note

that if r =I r′ and s =I s′ in R, then r + s =I r′ + s′ and rs =I r′s′. We

denote the set of all equivalence classes of elements of R under this relation by

R/I and will denote the equivalence class of an element r of R by r/I. Clearly

this relation is a congruence (i.e., an equivalence relation which is compatible

with two binary operations of R) and, consequently, R/I is well-defined for

any ideal I of R. Also, a ∈ I implies a ∈ 0/I since a =I 0 by the fact that

a + 0 = 0 + a. Thus I ⊆ 0/I. Moreover, if I is a subtractive ideal of R, then

0/I = I since a+ i = 0 + j ∈ I implies a ∈ I. Thus, for any subtractive ideal

I of R, the factor semiring R/I and the surjective morphism f : R → R/I,

given by r 7→ r/I, is well defined and its kernel is I. See also Example 9.1 and

Proposition 9.10 in [5].

We end this section by recalling some more definitions from [5] and write

them here for the sake of completeness as follows.

• A semiring with no nonzero zero divisors is called an entire (= semido-

main). A semifield is a semiring in which every nonzero element has a multi-

plicative inverse. A semiring R is zerosumfree if and only if r + r′ = 0 implies
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that r = r′ = 0. A semiring R is said to be simple if 1 + r = 1 for each r ∈ R.

Let R be a semiring and G(R) = {r ∈ R | 1+r ∈ U(R)}. A semiring R is called

a Gelfand semiring when G(R) = R. Clearly, every simple semiring is Gelfand.

Of course, bounded distributive lattices are among Gelfand semirings. But the

class of the Gelfand semirings is quite wider as Example 1.4 in [12] shows(cf.[5,

Example 3.38]).

3. B- and BJ -semirings with some preliminary results on the

stable range of commutative semirings

In this section, we first recall some definitions and results from section 2 of

[12], respectively, Definitions 3.1, 3.3, and Remark 3.6 and then discuss some

more properties of B-type semirings. That is, we extend the notion of the stable

range of a commutative ring ([4]) to the stable range of a commutative semiring

(or an n-stable semiring, for short) (Definition 3.1) and merely focus on some

simple results and properties of n-stable semirings, B- and BJ -semirings, where

B-semirings can be regarded as a generalization of a subclass of 2-stable rings

and BJ -semirings are exactly a natural extension of B-rings to semirings (see

Definition 3.3).

Definition 3.1. Let R be a commutative semiring and s ≥ 1 an integer. An

integer n ≥ 1 is said to be in the stable range of R (or simply, R is n-stable)

if every unimodular sequence (a1, a2, . . . , as, as+1), s ≥ n, of elements of R is

stable. The semiring R is said to be nJ -stable if every unimodular sequence

(a1, a2, . . . , as, as+1), s ≥ n, of elements of R with (a1, a2, . . . , as−1) ̸⊆ Jk(R)

is stable.

Remark 3.2. It is clear that if R is n-stable, then it is m-stable for any integer

m ≥ n. Note that the term “R is n-stable” is used in [11] (for convenience)

and is exactly the same as the statement “n is in the stable range of R”, which

is used by D. Estes and J. Ohm [4, page 345].

Definition 3.3. A commutative semiring R is said to be a B-semiring [resp

BJ -semiring] whenever for any unimodular sequence (a1, a2, . . . , as, as+1), s ≥
2, of elements in R [resp. with (a1, a2, . . . , as−1) ̸⊆ Jk(R)], there exists an

element b in R such that (a1, a2, . . . , as + bas+1) = R.

Remark 3.4. In the above definition, it is clear that the definition of a BJ -

semiring is exactly the same as the definition of a B-ring whenever R is assumed

to be a ring as defined in [10] and obviously, any B-semiring is a BJ -semiring.

The following example provides a trivial instance of a class of B-semirings.

Example 3.5. A semifield is a B-semiring (consequently, a BJ -semiring). That

is, 1 ∈ (a1, a2, . . . , an, an+1) = (a1, a2, . . . , an + ban+1), where b = 0 when

an ̸= 0; or b = 1 when an = 0. Moreover, besides some trivial examples of
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A Class of Commutative Semirings with Stable Range 2 II 83

semifields such as semifields of nonnegative reals and nonnegative rationals,

see [5, Proposition 7.8] that states: If I is a subtractive maximal ideal of a

commutative semiring R, then R/I is a semifield.

We now recall some of the results from [12] for the sake of comparison and

completeness.

Remark 3.6. The following facts are true in a commutative semiring.

(a) If all unimodular sequences of size n + 1 (n ≥ 1 a fixed integer) of a

commutative semiring R are stable, then any unimodular sequence of

size larger than n is stable (see [12, Theorem 2.6]).

(b) A commutative semiring R is a B-semiring [resp. BJ -semiring] if and

only if for any unimodular sequence (a1, a2, a3) of R [resp. with a1 /∈
Jk(R)], there exists an element b ∈ R such that (a1, a2 + ba3) = R (see

[12, Theorem 2.7]).

(c) Let n ≥ 1 be a fixed integer and R a commutative semiring in which

every maximal ideal is subtractive. Then R is n-stable if and only if R

is nJ -stable (see [12, Theorem 2.8]).

(d) Let R be a BJ -semiring in which every maximal ideal is subtractive.

Then R is 2-stable (see [12, Corollary 2.9]).

(e) Let R be a commutative semiring in which every maximal ideal is

subtractive [in particular, R is a subtractive semiring (i.e., a semiring

in which every ideal is subtractive)] and (a1, a2, . . . , an, an+1), n ≥ 1,

a unimodular sequence of R. Then (a1, a2, . . . , ai + an+1, . . . , an) = R

provided that ai ∈ Jk(R) for some 1 ≤ i ≤ n. Further, (a1, a2, . . . , ai+

an+1, . . . , an) = R for each 1 ≤ i ≤ n provided that an+1 ∈ Jk(R) (see

[12, Proposition 2.18]).

(f) Let R be a Gelfand semiring and let (a1, a2, . . . , an, an+1), n ≥ 1, be a

unimodular sequence of R. Then 1 ∈ (a1, a2, . . . , an + ban+1) for some

b ∈ R (i.e., one is in the stable range of R). In other words, we may

simply say R is a B-semiring when n ≥ 2 (see [12, Theorem 2.10]).

(g) A simple semiring is a B-semiring (consequently, a BJ -semiring), see

[12, Corollary 2.11].

(h) A semiring R is a B-semiring (consequently, a BJ -semiring) provided

that R is a semiring in which every maximal ideal is strong (see [12,

Corollary 2.11 and Proposition 2.15]).

• In view of the above remark, Part (b), we need only consider the unimod-

ular triples instead of arbitrary unimodular (n+1)-tuples, n > 2, in our study

of B- and BJ -semirings.

We now, similar to Remark 3.6(e), show the stability of a unimodular se-

quence of a semiring under some special conditions.
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Proposition 3.7. Let (a1, a2, . . . , an, an+1), n ≥ 1, be a unimodular sequence

in a semiring R such that an or an+1 is in Jk(R). Then:

(a) (a1, a2, . . . , an + an+1) = R provided that every maximal ideal of R is

subtractive.

(b) (a1, a2, . . . , an + an+1) = R provided that (a1, a2, . . . , an + an+1) is a

subtractive ideal of R.

(c) (a1, a2, . . . , an + an+1) = R provided that R is a subtractive semiring

(i.e., a semiring in which every ideal is subtractive).

Proof. Parts (a) and (c) follows from the fact that every ideal in a semiring is

contained in a maximal ideal [5, Proposition 5.47]. Part (b) follows from [15,

Corollary 2.2] that states any subtractive ideal in a semiring is contained in a

maximal subtractive ideal. □

Proposition 3.8. The direct product of any family of semirings is a B-semiring

if and only if each factor of the product is a B-semiring.

Proof. Let {Ri | i ∈ I} be a family of semirings and R = Πi∈IRi. The neces-

sary part is an immediate consequence of Theorem 3.13(a) below, which states

that the homomorphic image of a B-semiring is a B-semiring. To prove the suf-

ficiency, let Ri be a B-semiring for each i ∈ I. Suppose R = ({ai}, {bi}, {ci}).
Thus 1R = {1i} ∈ ({ai}, {bi}, {ci}), where 1i is the identity element of Ri

for each i ∈ I. Consequently 1i ∈ (ai, bi, ci) for each i ∈ I, which implies

1i ∈ (ai, bi + dici), where di ∈ Ri for each i ∈ I. Therefore, 1R = {1i} ∈
({ai}, {bi}+{di}{ci}) and so by virtue of Remark 3.6(b), R is a B-semiring. □

We now introduce a class of B-type semirings that are defined with respect

to a nonempty subset S of a semiring R.

Definition 3.9. Let S be a nonempty subset of a semiring R. R is said to be

a B-semiring [resp. BJ -semiring] with respect to S or R is an S-relative B-

semiring [resp. an S-relative BJ -semiring] if for any ideal (a1, a2, . . . , an, an+1),

n ≥ 2, of R and a ∈ S [resp. with (a1, a2, . . . , an−1) ̸⊆ Jk(R)] such that

1 + a ∈ (a1, a2, . . . , an, an+1), then there exists b ∈ R such that 1 + a ∈
(a1, a2, . . . , an−1, an + ban+1).

Remark 3.10. From the above definition, a B-semiring [resp. BJ -semiring] is a

{0}-relative (or simply, 0-relative) B-semiring [resp. 0-relative) BJ -semiring].

Clearly, every B-semiring [resp. BJ -semiring] with respect to a nonempty

subset S of R is a B-semiring [resp. BJ -semiring] provided 0 ∈ S. Moreover,

every SB-semiring [resp. SBJ -semiring] (Definition 4.1) is an S-relative B-

semiring [resp. S-relative BJ -semiring] for each nonempty subset S of R. Also,

let S ⊆ T be two nonempty subsets of a semiring R. Then R is an S-relative

B-semiring [resp. S-relative BJ -semiring] if R is a T -relative B-semiring [resp.

T -relative BJ -semiring]. Clearly, R is a B-semiring [resp. BJ -semiring] if
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and only if R is a G(R)-relative B-semiring [resp. G(R)-relative BJ -semiring],

where G(R) = {a ∈ R | 1 + a ∈ U(R)}.

• From the above remark, it is clear that the class of SB- and SBJ -semirings

(Definition 4.1) are contained in the class of S-relative B- and S-relative BJ -

semirings, respectively. Further, the class of S-relative B- and S-relative BJ -

semirings are contained in the class of B- and BJ -semirings, respectively, pro-

vided that 0 ∈ S.

Example 3.11. In Remark 3.6(f and g), it is shown that a Gelfand semiring R

[in particular, a simple semiring] is a B-semiring. Thus from the above remark,

R is an R-relative B-semiring or equivalently an S-relative B-semiring for any

nonempty subset S of R.

We now provide a criterion for the study of S-relative B- and S-relative

BJ -semirings (see Remark 3.6(b)).

Theorem 3.12. (cf. [13, Theorem 2]) Let S be a nonempty subset of a semiring

R. A semiring R is an S-relative B-semiring [resp. an S-relative BJ -semiring]

if and only if for every a ∈ S and c1, c2, c3 ∈ R with 1 + a ∈ (c1, c2, c3) [resp.

c1 /∈ Jk(R)], it follows that 1 + a ∈ (c1, c2 + bc3) for some b ∈ R.

Proof. The proof is similar to the proof of Remark 3.6(b)) by replacing 1 with

1 + a (see also the proof of Theorem 4.3 below). □

• In view of the above theorem, we need only consider the sequences of size

three that satisfy B-stability condition with respect to a nonempty subset S of

R in our study of S-relative B- and S-relative BJ -semirings.

We now consider the homomorphic image of B- and BJ -semirings. Also,

Abdolyousefi and Chen in [1, Lemma 2.9] show the similar result for J-stable

rings and they refer to the work of the second author [13, Theorem 3] that

shows the homomorphic image of a B-ring is a B-ring. Further, they show

how the classes of J-stable rings and B-rings coincide with each other (see the

paragraph preceding Theorem 2.5 and Remark 2.6 in [1]).

Theorem 3.13. (cf. [13, Theorem 3]) Let f : R → S be a surjective morphism

of semirings.

(a) If R is a B-semiring, then so is S.

(b) If R is a BJ -semiring, then so is S provided that f(Jk(R)) ⊆ Jk(S).

Proof. We write a proof for Part (b) and leave the other part to the reader.

By virtue of Remark 3.6(b), it suffices to argue only for unimodular sequences

of size three. Suppose R is a BJ -semiring and let 1S ∈ (x1, x2, x3) with x1 /∈
Jk(S), where x1, x2, x3 ∈ S. Thus f(1R) = 1S =

∑
sixi for some si ∈ S,

where i = 1, 2, 3. Therefore, f(1R) =
∑

f(ri)f(ai) =
∑

f(riai) = f(
∑

riai)
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for some ri and ai in R, where f(ri) = si and f(ai) = xi and i = 1, 2, 3. Clearly

1R ∈ (a1, a2, a3) and a1 /∈ Jk(R) by hypothesis (see also Proposition 2.4). Thus

1R ∈ (a1, a2 + ba3) for some b ∈ R since R is a BJ -semiring. Consequently

f(1R) = 1S ∈ (f(a1), f(a2) + f(b)f(a3)) = (x1, x2 + sx3), where s = f(b). □

Corollary 3.14. Let I be a proper ideal of a semiring R. Then R/I is a

B-semiring when R is a B-semiring.

Proof. Clearly r 7→ r/I defines a surjective morphism from R to R/I, where

r ∈ R. Now the proof follows directly from Part (a) of the above theorem. See

also Example 9.1 and Proposition 9.10 in [5]. □

We conclude this section with extending the above corollary to an S-relative

B-semiring.

Theorem 3.15. Let I be a proper ideal of a semiring R and S a nonempty

subset of R. Then R/I is an S/I-relative B-semiring when R is an S + I-

relative B-semiring. Further, if S ∩ I ̸= ∅ [in particular, if 0 ∈ S], then R/I is

also a B-semiring.

Proof. By virtue of Theorem 3.12, it suffices to argue only for sequences of size

three. Suppose 1/I + s/I ∈ (a1/I, a2/I, a3/I), where s ∈ S. Thus (1 + s)/I =∑
(ri/I)(ai/I) =

∑
(riai)/I for some ri ∈ R, where i = 1, 2, 3. Therefore,

1 + s + a = r1a1 + r2a2 + r3a3 + a′ for some a, a′ ∈ I by definition. Thus

1 + s+ a ∈ (a1, a2, r3a3 + a′). Now by hypothesis, there exists b ∈ R such that

1+s+a ∈ (a1, a2+b(r3a3+a′)). Consequently, (1/I)+(s/I) ∈ (a1/I, (a2/I)+

(br3)/I(a3/I)) and the proof of the first part is complete. The “further” part

is clear since a/I = 0/I when a ∈ I (see also Remarks 2.5 and 3.10). □

4. SB- and SBJ -semirings

We now turn our attention to the study of SB-semirings [resp. SBJ -

semirings] (Definition 4.1). Our main objective here is to compare the theory

of this particular subclass of B-semirings [resp. BJ -semirings] with that of

B-semirings [resp. BJ -semirings] given in the previous section.

Definition 4.1. R is defined to be a strongly B-semiring (or SB-semiring

for short) [resp. strongly BJ -semiring (or SBJ -semiring for short)] if d ∈
(a1, . . . , an, an+1), n ≥ 2, [resp. with (a1, a2, . . . , an−1) ̸⊆ Jk(R)] implies that

there exists b in R such that d ∈ (a1, a2, . . . , an−1, an + ban+1).

Remark 4.2. In the above definition, it is clear that the definition of an SBJ -

semiring is exactly the same as the definition of an SB-ring whenever R is

assumed to be a ring as defined in [10] and obviously, any B-semiring [resp.

SB-semiring] is a BJ -semiring [resp. SBJ -semiring]. Also, it is clear that any

SB-semiring [resp. SBJ -semiring] is a B-semiring [resp. BJ -semiring]. See the

following diagram.
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SB-semiring → B-semiring → BJ -semiring

SB-semiring → SBJ -semiring → BJ -semiring

We now provide a criterion for the study of SB- and

SBJ -semirings (see Remark 3.6(b)).

Theorem 4.3. A semiring R is an SB-semiring [resp. SBJ -semiring] if and

only if for every s, c1, c2, c3 ∈ R with s ∈ (c1, c2, c3) [resp. c1 /∈ Jk(R)], it

follows that s ∈ (c1, c2 + bc3) for some b ∈ R.

Proof. The proof is essentially similar to the proof of Lemma 3.1 of [10]. The

necessity clearly follows from the definition of an SB-semiring [resp. SBJ -

semiring]. We just give a proof for the SBJ -semiring case and leave the other

part to the reader. To prove the sufficient part, assume that a1, a2, . . . , an, an+1,

n ≥ 2, is a sequence in R with (a1, a2, . . . , an−1) ̸⊆ Jk(R) and let

r ∈ (a1, a2, . . . , an, an+1). Without loss of generality, we may assume that

an−1 /∈ Jk(R). Suppose r =
∑n+1

i=1 aixi and let s = an−1xn−1 + anxn +

an+1xn+1 for some xi ∈ R. Then r ∈ (a1, a2, . . . , an−2, s) and s ∈ (an−1, an, an+1).

Since an−1 /∈ Jk(R), s ∈ (an−1, an + ban+1) for some b ∈ R. Therefore

r ∈ (a1, a2, . . . , an−2, s) ⊆ (a1, a2, . . . , an−1, an + ban+1), and the proof is com-

plete. □

Remark 4.4. We can also prove the above theorem by using the same argument

as in the proof of [12, Theorem 2.7] (see Remark 3.6(b)).

• In view of the above theorem, we need only consider triples instead of arbi-

trary (n+1)-tuples, n > 2, in our study of SB-semirings [resp. SBJ -semirings].

We now provide a sharper result than Theorem 4.3 for the study of SB- and

SBJ -semirings when the underlying semiring is subtractive.

Theorem 4.5. Let R be a subtractive semiring. Then R is an SB-semiring

[resp. SBJ -semiring] if and only if for every sequence (c1, c2, c3) of R [resp.

with c1 /∈ Jk(R)], there exists b ∈ R such that c3 ∈ (c1, c2 + bc3). Further,

if A = (a1, a2, . . . , an, an+1), then A = (a1, a2, . . . , an−1, an + ban+1) for some

b ∈ R.

Proof. The necessity clearly follows from the definition of an SB-semiring

[resp. SBJ -semiring]. We just give a proof for the SBJ -semiring case and

leave the other part to the reader. To prove the sufficient part, assume that

a1, a2, . . . , an, an+1, n ≥ 2, is a sequence in R with (a1, a2, . . . , an−1) ̸⊆ Jk(R)

and let r ∈ (a1, a2, . . . , an, an+1). Without loss of generality, we may assume

that an−1 /∈ Jk(R). Since an+1 ∈ (an−1, an, an+1), there exist b ∈ R such that

an+1 ∈ (an−1, an+ban+1) by hypothesis. Hence r ∈ (a1, a2, . . . , an−1, an, an+1) =

(a1, a2, . . . , an−1, an + ban+1), where the equality holds by the subtractive as-

sumption and the proof is complete. □
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• In view of the above theorem, we see that a subtractive semiring R is an

SB-semiring [resp. SBJ -semiring] if for any sequence (a1, a2, a3) of R [resp.

with a1 /∈ Jk(R)], there exists b ∈ R such that a3 ∈ (a1, a2 + ba3). Clearly, the

above theorem is a good criterion to check whether a ring is an SB-ring since

every ideal in a ring is subtractive.

We now consider the homomorphic image of SB- and SBJ -semirings.

Theorem 4.6. Let ϕ : R → S be a surjective morphism of semirings.

(a) If R is an SB-semiring, then so is S.

(b) If R is an SBJ -semiring, then so is S provided that ϕ(Jk(R)) ⊆ Jk(S).

Proof. We write a proof for the SBJ -semiring case and leave the other part

to the reader. Let R be the image of R under the homomorphism ϕ, and

let d ∈ (a1, a2, a3 with a1 /∈ Jk(R), where a1, a2, a3, d ∈ R. suppose that

d =
∑3

i=1 aixi for some xi ∈ R and let ϕ(ai) = ai, ϕxi = xi for i = 1, 2, 3. Let

d =
∑3

i=1 aixi. Since by hypothesis ϕ(Jk(R)) ⊆ Jk(R), we have a1 /∈ Jk(R) and

so d ∈ (a1, a2+ ba3) for some b ∈ R. Since ϕ(d) = d, we have d ∈ (a1, a2+ ba3),

where ϕ(b) = b. Hence by Theorem 4.3, S = R is an SBJ -semiring. □

Corollary 4.7. Let I be an ideal of a semiring R. Then R/I is an SB-semiring

when R is an SB-semiring.

Proof. Clearly r 7→ r/I defines a surjective morphism from R to R/I, where

r ∈ R. Now the proof follows directly from Part (a) of the above theorem. See

also Example 9.1 and Proposition 9.10 in [5]. □

Proposition 4.8. The direct product of any family of semirings is an SB-

semiring if and only if each factor of the product is an SB-semiring.

Proof. The necessary part follows directly from Theorem 4.6(a) and the proof

of the sufficient part is similar to the proof of Proposition 3.8. □

In the following theorem, we partially characterize the B-stability condition

of R[x] (the semiring of polynomials over a semiring R), which is somewhat

a counterpart to [10, Theorem 2.7] and [resp. [10, Theorem 3.4]] that states:

R[x] is a B-ring [resp. an SB-ring] if and only if R is completely primary (i.e.,

a ring consisting of units and nilpotents) [resp. a field].

Theorem 4.9. Let R[x] be the semiring of polynomials over a semiring R.

(a) Let I be a proper ideal of R. If R[x] is a B-semiring with respect to the

ideal I[x] of R[x], then I is not a strong ideal of R. In other words, if

I is a strong proper ideal of R, then R[x] can not be a B-semiring with

respect to the ideal I[x] in R[x].

(b) If R[x] is a B-semiring, then R is not a zerosumfree semiring.

(c) If R[x] is an SB-semiring, then R is not a zerosumfree semiring.
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Remark 4.10. Clearly, Z (ring of integers) is not zerosumfree as a semiring

since rings can not be zerosumfree by the fact that −1 + 1 = 0. Thus, the

converse of Parts (b) and (c) of the above theorem are not true in general since

by Theorem 2.7 of [10], Z[x] is not a B-ring [consequently, not an SB-ring]. We

can also directly conclude from [10, Theorem 3.4] that Z[x] is not an SB-ring

since Z is not a field.

Proof. (a): Suppose to the contrary that I is a strong proper ideal of R. Let

a ∈ I and 1 + ax ∈ (x2, x, 1 + ax). If R[x] is a B-semiring with respect to

I[x], then 1 + ax ∈ (x2, x + b(x)(1 + ax)) for some b(x) ∈ R[x] by definition.

Let 1 + ax = x2f(x) + (x + b(x)(1 + ax))g(x), where f(x), g(x) ∈ R[x]. Let

fi, gi, and bi represent the coefficient of xi in the polynomials f(x), g(x), and

b(x), respectively. Now by equating the corresponding coefficients in the above

equation, we get (x+ b(x)+axb(x))g(x) = (x+ b0+ b1x+ · · ·+ab0x+ · · · )g(x),
which implies g0x + b0g0 + b1g0x + ab0g0x + b0g1x and so 1 = g0b0 and a =

g0 + b1g0 + ab0g0 + b0g1. Thus if I is strong in R, then g0 ∈ I since a ∈ I by

the assumption, which implies 1 ∈ I and leads to a contradiction.

(b): The proof follows directly from Part (a) by setting I = {0} and using

the fact that {0} is a strong ideal of R if and only if R is a zerosumfree semiring.

(c): The proof is very much similar to Part (a) by replacing 1+ax with r and we

write it here for the sake of comparison and completeness. Notice that (c) is an

immediate consequence of (b) since an SB-semiring is a B-semiring. Suppose

to the contrary that R is a zerosumfree semiring. Let r ∈ R with r ̸= 0. Then

r ∈ (x2, x, r). If R[x] is an SB-semiring, then r ∈ (x2, x + rb(x)) for some

b(x) ∈ R[x]. Let r = x2f(x)+ (x+ rb(x))g(x), where f(x), g(x) ∈ R[x]. Let fi,

gi, and bi represent the coefficient of xi in the polynomials f(x), g(x), and b(x),

respectively. Equating coefficients in the above equation gives r = rb0g0 and

0 = g0 + r(b0g1 + g0b1). Now if R is zerosumfree, then g0 = 0, which implies

r = 0 and leads to a contradiction. □

Example 4.11. Let R be the semiring of nonnegative reals, or nonnegative

rationals, or nonnegative integers, respectively, with usual addition and mul-

tiplication. Clearly, R is a commutative, zerosumfree semiring which is not

additively idempotent and by Theorem 4.9(b), R[x] is not a B-semiring [con-

sequently, not an SB-semiring]. For more examples of zerosumfree semirings,

see [5].

Corollary 4.12. If R is an additively idempotent semiring [in particular, a

simple semiring], then R[x] is not a B-semiring [consequently, not an SB-

semiring].

Proof. The proof is immediate from Part (b) of the above theorem since every

additively idempotent semiring [in particular, a (simple semiring], which is not

a ring, is zerosumfree. Note that a+ b = 0 implies a = a+a+ b = a+ b+ b = b
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in any additively idempotent semiring and also a simple semiring is additively

idempotent since 1 + 1 = 1. □

We close this section with two examples related to the stability of polynomial

semirings.

Example 4.13. Let R be a semiring (ring) and S = ideal(R) be the semiring

of ideals of R under the addition and multiplication of the ideals of R. Then

by the above Corollary, S[x] is not a B-semiring [consequently, not an SB-

semiring] since S is a simple semiring (i.e., R + A = R for any ideal A of

R).

Example 4.14. (cf. [5, Example 5.1]) If A is an infinite set, then the family

fsub(A) of all finite subsets of A is a strong ideal of the semiring (sub(A),∪,∩).
Thus, by Theorem 4.9(a), R[x] is not a B-semiring with respect to I[x] when

I = fsub(A) and R = (sub(A),∪,∩).

5. Some special cases

In this section we study the B-stability condition of some special classes of

semirings such as regular semirings (Theorem 5.2) and construct a semiring R

by combining a semidomain D and a semifield F , D ⊆ F , and show that D is

a B-semidomain when R is a B-semiring (Proposition 5.3). We also discuss an

example regarding the stability condition of a polynomial semiring (Example

5.4). Finally, we write a brief note on matrix completion of commutative rings

and close the paper by posing a question related to the matrix completion of

B- and 2-stable semirings.

We will use the following proposition to prove Theorem 5.2 as a comparison

to [10, Corollary 3.2] that states: “a regular ring is an SB-ring”.

• An element a of R is complemented if and only if there exists an element

c of R satisfying ac = ca = 0 and a + c = 1. This element c of R is the

complement of a ∈ R. If a has a complement, it is unique. Denote the set

of all complemented elements of R by comp(R). This set is nonempty since

0 ∈ comp(R). See Chapter 4 of [5] for a detailed study of complemented

elements in semirings.

Proposition 5.1. (cf. [10, Lemma 3.4]) Let R be a B-semiring and a ∈
comp(R). Suppose a ∈ (a1, a2, . . . , an−1, an), n ≥ 3. Then

a ∈ (a1, a2, . . . , an−2, an−1 + ban) for some b ∈ R.

Proof. Since a ∈ comp(R), there exists c ∈ R such that a+ c = 1 and ac = 0.

Let a =
∑

aixi =
∑

(aia)(xia). Thus, 1 = c+a = (a1a)(x1a)+c+
∑

(aia)(xia)

implies 1 = (a1a)(x1a) + c +
∑

(aia)(xia) = (a1a)(x1a) + c +
∑

(aia)(xia).

Hence, 1 = (a1a+ c)(x1a+ c)+
∑

(aia)(xia). Thus, 1 ∈ (a1a+ c, a2a, . . . , ana).

Thus, since R is a B-semiring, we have 1 ∈ (a1a + c, a2a, . . . , an−2a, an−1a +
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bana) for some b ∈ R. Therefore, a ∈ (a1a, a2a, . . . , an−2a, an−1a + bana) ⊆
(a1, a2, . . . , an−2, an−1 + ban). □

Theorem 5.2. (cf. [10, Corollary 3.2]) Every plain simple yoked multiplica-

tively regular semiring is an SB-semiring.

Proof. By [5, Example 4.5] ifR is a plain simple yoked semiring, then comp(R) =

I×(R) (the set of all multiplicatively idempotent elements of R). Let r ∈
(a1, a2, a3) where a1, a2, a3 ∈ R. Since R is a regular semiring, then r = rxr

for some x ∈ R. Consequently, rx is a multiplicatively idempotent element of

R. Now, the result follows directly from the above proposition and the fact

that every simple semiring is a B-semiring by [12, Corollary 2.11] (see Remark

3.6(g)). □

Proposition 5.3. (cf. [10, Theorem 2.6] and [13, Theorem 5]) Let D be a

semidomain and F a semifield containing D. Let R = {(a1, . . . , ak, a, a, . . .) |
ai ∈ F, a ∈ D}, where k is a nonnegative integer (k may be different for

distinct elements of R). The operations in R are componentwise addition and

multiplication. Let ϕ : R → D be a map given by (a1, a2, . . . , ak, a, a, . . .) 7→ a.

Then:

(a) If R is a B-semiring, then D is a B-semidomain.

(b) If R is a BJ -semiring, then D is a BJ -semidomain provided ϕ(Jk(R)) ⊆
Jk(D).

(c) If R is an SB-semiring, then D is an SB-semidomain.

(d) If R is an SBJ -semiring, then D is an SBJ -semidomain provided

ϕ(Jk(R)) ⊆ Jk(D).

Proof. Clearly 1F = dd−1 for each 0 ̸= d ∈ D and hence 1D = 1F 1D =

(dd−1)1D = d−1(d1D) = d−1d = 1F . So 1R = (1, 1, 1, . . .). It can eas-

ily be seen that D is a homomorphic image of R under the map given by

(a1, a2, . . . , ak, a, a, . . .) 7→ a. Now the proof of Parts (a), (b); (c), and (d)

follows directly from Theorem 3.13; and Theorem 4.6, respectively. □

We now discuss and provide an example regarding the stability condition of

a polynomial semiring.

Example 5.4. Clearly, from Theorem 3.13 [resp. 4.6], if R[x] (the semiring of

polynomials over a semiring R) is a B-semiring [resp. an SB-semiring], then

so is R under the morphism ϕ : R[x] → R given by a0+a1x+ · · ·+anx
n 7→ a0,

where ai ∈ R for each 0 ≤ i ≤ n. See also Theorem 4.9 that shows R[x] is not

a B-semiring [resp. an SB-semiring] when R is zerosumfree. Further, since a

simple semiring R is a B-semiring ([12, Corollary 2.11]; see Remark 3.6(g)),

the converse of this example need not be true in general since by Corollary

4.12, R[x] is not a B-semiring when R is a simple semiring. We also, by a

trivial example of a B-semiring, show that the converse of this example need
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not be true in general. Let R be the semiring of nonnegative reals, which is a

B-semiring by Example 3.5. Now, by Theorem 4.9, R[x] is not a B-semiring

since R is zerosumfree.

We conclude this paper with a brief note on the notion of (strongly) Com-

pletable rings which follows with a somewhat similar question on semirings

being Completable.

In [8], there is a discussion of matrix completions over different types of

rings with many references related to this context. Completable rings have

been extensively studied, largely in connection with Serre’s Problem (now the

Quillen-Suslin Theorem), which can be phrased as: polynomial rings in finitely

many variables over fields are completable [9]. In 1981 Gustafson, Moore, and

Reiner [6] extended Hermite’s classic result along a different course, showing

that Z (or more generally any Dedekind domain) is very strongly completable,

i.e., given an m×n matrix A (m < n) and an element d of the ideal generated

by its m ×m minors, we can extend A to an n × n matrix with determinant

d. Nearly thirty years later, Gustafson, Robinson, Richter, and Wardlaw [7]

returned to the topic, using a similar technique to show that principal ideal

rings are very strongly completable.

The literature on outer product rings and very strongly completable rings (as

described in [8]) has focused almost exclusively on the Noetherian case. These

results are often deep, with proofs that do not typically generalize to non-

Noetherian rings at all, so it is likely to be extremely difficult to achieve the

same level of understanding of the general case. However, Juett and Williams

in [8] achieve a significant expansion of the theory of outer product rings and

very strongly completable rings by providing non-Noetherian generalizations of

some of the examples given in the introduction of their paper [8].

Also, in [1], there is a discussion of matrix completions over J-stable rings

and in [1, Theorem 4.11], it is shown that every J-stable ring is strongly com-

pletable. The authors in the paragraph preceding [1, Corollary 4.2] refer to [11,

Corollary 2.1], which is a typo and should be “[11, Corollary 2.11]” that states

every 2-stable ring is completable.

Finally, we end this paper with a question related to the matrix completion

of a B- or 2-stable commutative semiring.

Question: Under what condition(s) a unimodular sequence of a B-semiring

or 2-stable semiring R can be completed to a square matrix whose permanent

is a unit of R. For the definition and some properties of the permanent of a

(square) matrix see [3] and Chapter 17 of [5].
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